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Traveling wave solutions in the Burridge-Knopoff model
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Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012

(Received 9 June 1998

The slider-block Burridge-Knopoff model with the Coulomb friction law is studied as an excitable medium.
It is shown that in the continuum limit the system admits solutions in the form of self-sustained shock waves
traveling with constant speed which depends only on the amount of accumulated stress in front of the wave.
For a wide class of initial conditions the behavior of the system is determined by these shock waves and the
dynamics of the system can be expressed in terms of their motion. The solutions in the form of the periodic
wave trains and sources of counterpropagating waves are analyzed. It is argued that depending on the initial
conditions the system will either tend to synchronize or exhibit chaotic spatiotemporal behavior.
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I. INTRODUCTION modeling the dynamics of earthquaK&s-17]. It is clear that
systems exhibiting stick-slip motion have both necessary in-
Propagating self-sustained wavésitowaves and more gredients of excitable systems. The threshold behavior here
complex spatiotemporal patterns are characteristic of excits due to static friction, which prevents any motion in the
able media of different nature. A typical example of such asystem until some critical amount of stress is accumulated.
phenomenon is the burning of black powder in a safety fuseThe coupling of the elements of the system at different
When the fuse is ignited at one end, the exothermic reactioROINts in space is due to the nonlocality of elastic stress.
releases heat which is then spread out by heat diffusion, Singular perturbation techniques proved to be very effec-

Thus, the neighboring regions of the fuse ignite, leading tdiVe in treating problems of traveling wave propagation in

self-sustained propagation of the combustion front. The phef€action-diffusion systenid-6,18,19. These methods use a

nomenon of the nonattenuated propagation of waves is iﬁ:rong separation of time scales in the problem to decompose

fact common for a variety of physical, chemical, and biologi—t e dynamics of the system into fast and slow motion.

cal systemg1-6]. Traveling waves are experimentally ob- Eleﬁégwﬂsr:(ggatel?:?allls ?ristcr)]erecaglr?tiitlgfn;g(rjtﬁlsu(;szglr(j“p
served in semiconductor and gas plasma, semiconductor ahe’ pecially in t . -
S a strong separation of time scales between fast slipping

superconductor structures, combustion systems, active opfl- : :
events and slow accumulation of stress. It is therefore advan-

cal media, magnetic media under illumination, autocatalyticta cous o trv to apply these technigues to the problem of
chemical reactions, and nerve and heart tigsee[1—6] and sti%k—slip moti{)n pply q P

references therejn In this paper we present a study of the Burridge-Knopoff

In order for self-sustained waves to be feasible, the sys- . ) o
tem must possess two basic ingredients. First, the syste I!der-block mode{11] with the Coulomb friction law. We

must beexcitable that is, there has to be a threshold belowWIII show that for a sufficiently .SIOle spatially V?Wing Qis-
which the perturbation of the steady homogeneous state glacement variable the dynamics of the system is dominated

the system decays, while perturbations of larger amplitud y self—_sustamed traveling shock waves. We wil SIUdY the
grow. In the example above, a sufficient amount of heat | roperties of these waves and reformulate the dynamics of

needed to ignite black powder. Second, there has to be Qe system in terms O.f their motion. .
Our paper is organized as follows. In Sec. Il we introduce

coupling between the regions of the system at dlffereng e governing equations for the model we study and discuss

points in space. In the case of the safety fuse such a couplir@e features of the friction law used, in Sec. Il we construct
is provided by heat diffusion, leading to a spread of the tem- ' ‘

perature and ignition of powder in front of the combustionthe solutions in the form of self-sustained traveling shock

zone. Thus, prototype systems exhibiting self-sustained V€S N Sec. IV we reformulate the dynamics of the system
waves are reaction-diffusion systefits-6]. in terms of the motion of these shock waves and study gen-

Recently, it was pointed out that an entirely different classerall properties of the reduced problem, in Sec. V we analyze

of systems may be considered as excitdbie These are two different types of solutions, and in Sec. VI we draw

elastic media with friction exhibiting stick-slip motion. Both conclusions.

experimental observations and numerical simulations show Il. MODEL

that such systems are capable of supporting steadily propa- '

gating solitary waves in the form of shock&-10|. These The Burridge-Knopoff model consists of a one-

systems are also of special interest because they are used thmensional array of blocks of massresting on a frictional
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| that this model was recently studied numerically in R&f]
a a (although for parameters different from those considered in
this papey.
P We would like to emphasize that in contrast to the
velocity-weakening friction law, for which the kinematic

c friction force is a continuous function of the block velocity at
W o m m m v=0, in our friction law the forcd has adiscontinuityat v

i =0, reflecting the fact that the coefficient of static friction is
typically larger than that of kinematic friction. As a result of
this difference, the accumulated stresxelerateshe block
~at the onset of motion, releasing potential energy. As we will
surface[11]. The blocks are connected together by springssee below, this provides the sustaining force for the traveling
with spring constank. and pulled by a loader plate moving waves studied in the following section. Also, as we will

with constant speed/ via another set of springs having show below, this ensures the existence of the proper con-
spring constantk,, (see Fig. 1. Let us measure the displace- tinyum limit asa— 0.

mentXi of theith block relative to the pOint of attachment of Let us now formulate the equations of motion for the
theith loader spring. In this case the total fof€eacting on  plocks in the case of the friction law introduced above. Re-

FIG. 1. The Burridge-Knopoff model.

theith block is given by call that the displacements; are measured relative to the
loader plate; so they are defined in the reference frame mov-
Fi=Ke(Xit1+Xi-1=2X)) —kpX; = fj, (1) ing relative to the surface with velocity. Therefore, when

the blocks are at rest, their equation of motion becomes
wheref; is the force of friction. The dynamics of the system

is completely determined by the equation of motiorX
=F;, provided that the friction law is specified. Note that
the friction forcef; is the only nonlinearity in the equation of
motion. Clearly, the dynamics of the system will signifi-
cantly depend on the particular choice of the friction law.
Recently, a lot of results were presented on the dynamics of
the Burridge-Knopoff model in the case of the velocity-
weakening friction law9,10,12—-16. A characteristic feature
of the Burridge-Knopoff model with this form of friction is

When the block slides, its equation of motion changes to

M¥=Ko(Xi 41+ Xi—1—2X) —KpXi = fs— a(X; +V). @

The transition to sliding(slip) occurs when the forcé;
reaches the value df :

its highly chaotic dynamics that occurs on all length scales Ko(Xis 1+ X 1—2X) —k, X =T, . (4)
down to the smallest length scadeand, therefore, the ab- aorL e Voo
sence of the proper continuum linjit2]. In other words, the equation of motion of a block changes

In contrast to most previous studies, here we adopt thgom Eq. (2) to Eq. (3) when the condition in Eq(4) is

Coulomb friction law, which is applicable to clean dry SUT satisfied. Of course, the block comes back to rest wkien
faces(see, for exampld,20]). Namely, we will characterize T~ _V during sliding

the fr|ct|pn fpr(_:e by the value of the static fr|ct|cfr@ gnd the Let us introduce the following dimensionless quantities:
kinematic frictionf,<f,, wheref, andf are positive con-

stants. Thus, the block will remain at resFif<f, . WhenF; % Ik K KX+ f
reachesf, the block starts to movéslips) and the friction x' = _\/E, t' =t \/E uj=— G (5)
force dropsnstantaneouslyrom the value off, to the value a vk m fi—fs

of fs. When the block comes to re@ticks, static friction
turns on again. Also, we will supplement the friction force

with the viscous friction ternfs.o {v) = av, wherev is the
velocity of the block andr is a constantFig. 2). Note that

wherea is the distance between the attachment points of the
loader springgFig. 1). The dimensionless displacement vari-
ableu; is chosen in such a way that the system is excitable

this kind of friction law was considered already in the origi- MY atu;>0 [see Eq(1); in order for slip to occur, the force
nal paper of Burridge and Knopoft.1] and is observed in F; must exceed the valuk; of sliding friction], while the

the friction experiments and their analdg@d—29. Also note ~ Plocks will always slide fow;>1 [see Eq(4)]. o
If ke>ky, one can naturally go to the continuum limit by

making a substitutionX;, ;+ X;_;—2X;—a? (9*°X/9x?).

f This is a good approximation when the length scale of the
variation of X; is of order 1 in the new variables. Using the
f, ~ov variables in Eq(5), we rewrite Eqs(2) and(3), respectively,
as follows:
f
§ ut:U, (6)
v U= Uxx—U—27y(U—v), (7

FIG. 2. Friction force as a function of the velocity. where we introduced dimensionless constants
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o Vikom ation one should consider the continuum limix— 0 of the
v= , V= ﬁ (8) Burridge-Knopoff model. In short, this is merely a simplifi-
2vkpm ro’s cation of the mathematical handling of the elastic dynamics.

) o ] A much more important assumption is that the friction re-
and dropped the primes for simplicity of notation. Note thatghonse 1o the motion of the medium is instantaneous and has
in the continuum limit in addition to tracking the motion of ;a1 correlation length. It would be incorrect to think of the
individual blocks, one also has to follow the motion of the «gj;a” of the block a as an atomic distance. Rather. the
slip points. Slmllarl_y, one should keep track of the positions, 51 e of the parametea should have a magnitude of the
of the p_omts at which th_e_ blo_cks come t_o rest_. _The latter are.rrelation (memory length of the cooperative effects re-
determined by the condition in E¢6) during sliding. sponsible for the surface frictiofsee, for example21] and

Determining the position of the slip points in the con- references thereinThen the response of the system can be

tinuum limit turns out to be a rather complicated problem, ¢qnsidered to be instantaneous if the characteristic velocity
since t_he position of the slip W!|| stll[ depend on thg local o the blocks is greater thaa 7oy, Whereryy is the char-
dynamics of the blocks. In the discretized form, the slip CON-3cteristic sticking time.

dition [Eq. (4)] in the variables of Eq(5) becomes

Ui+ U =20, Il. TRAVELING WAVES

:ui_j-! (9)

Let us now demonstrate that E¢6)—(9) admit solutions
in the form of traveling shock waves with constant speéd
whereAx= Jk,/k.. We will get back to this problem in the the limit of vanishingly smalb. But before we do that, let us
following section where we will show that in the continuum see what kind of dynamics one would observe if there are no
limit the dynamics of the slip becomes independentaf slip events and the initial distribution af is taken to be a

Equations(6)—(9) are the constitutive equations that will sufficiently slowly varying distributiorug(x) (the latter en-
be studied in the rest of the paper. As can be seen from Egures that no slip events will occur at short times this
(5), we chose time and length scales so that the speed éfse the dynamics is trivial: we will have(x,t)=ugy(x)
sound in the system is equal to 1. The time scale is deter+vt, as long as no slip events ocdsee Eq(6)]. From this
mined by the period of oscillations of an isolated block dueone can see that the characteristic time scale of accumulation
to the loader spring. Note that in the continuum limit the of stress isv ~*>1, whenv is small. In other words, foo
characteristic speed of a block during sliding is much smaller<1 on the time scale of order 1 one will not see any motion
than the speed of sound. This can be seen fron{&df one  with the distribution ofu fixed to uy(x) +C, whereC is a
assumesl,~ 1, measure¥; in the units of Eq(5), and uses constant. In particular, if one starts with the uniform initial
a natural assumption thét— fi<ak,. The behavior of the conditions, one will havei=u, , whereu, is some constant
system is determined only by two parameters: the dimenless than 1. The other possible situation when the dynamics
sionless dissipation parametgerwhich measures the effect of the system becomes trivial is steady creep, when all the
of viscous friction and the dimensionless rate of accumulablocks move together with the loader plate; so we simply
tion of stressv. In the following we will considerw to be  haveu=2yv=0 for v<1 [see Eq(7)].
small, which expresses the fact that the time scale of accu- Consider the system with=u_ andv=0. As was noted
mulation of stress is much longer than that of the motion ofin the previous section, whem, <O slip events cannot oc-
an individual block during sliding. cur; so if one slightly moves a particular block, it will

Finally, let us discuss the applicability of the Burridge- quickly move to a new equilibrium position and no signifi-
Knopoff model in the context of real physical systems exhib-cant changes will occur. A different situation is realized for
iting stick-slip motion. In a real system one should replace &<<u, <1 when the system becomes excitable. Then, if a
one-dimensional array of masses between the loader plagingle block is slightly moved, it will accelerate, releasing
and the frictional surface by an elastic medium of certainthe potential energy accumulatedun . As a result of this
thicknessh. A straightforward extension of the Burridge- acceleration, the force acting on the adjacent blocks will in-
Knopoff model would therefore be a two-dimensional arraycrease, resulting in slipping of the adjacent block that was at
of masses connected by springs whose one edge is rigidiest. This avalanchelike process will go on, leading to the
attached to the loader plate and the other slides on the fridormation of the shock wave that releases the accumulated
tional surface. Naturally, the thickness of such a mediunstress, so thati changes to a new lower value of . The
should greatly exceed the microscopic length s@l&he  situation here resembles a great deal the combustion of the
stick-slip motion in such a medium is due sarface waves safety fuse discussed in the Introduction. Thus, ferud.
[26]. The dispersion of these waves is given by=Kk? <1 a small perturbation ofi may lead to a significant
+(w/2h)?(1+2n)?, wheren is an integer and the trans- change of the state of the system, switching it fromu_. to
verse speed of sound was taken to be 1. The main difficulty=u_ . As in other excitable systenj&—6], it is natural to
here is that instead of a single displacement variabtsme  expect that such a perturbation will transform at long times
has to deal with a large number of modes with differerd  to a shock wave traveling with constant velooityNumeri-
simplification that is presented by the Burridge-Knopoffcal simulations of Eqs(6)—(9) with v=0 show that this
model consists of lumping up these modes into a singléndeed happens in our model.
mode with aneffectivestifinessk, [Eq. (3)]. It is clear that Since all the “nonlinearity” in the problem is contained
the dominant modes will be those with smajlso we must in the slip condition given by Eq(9), our system is not
havekp~(a/h)2kc< k.. Thus, in a physically relevant situ- unlike piecewise-linear model used to study propagation of

(Ax)?



FIG. 3. The dependenagu.). Results of the numerical solu-
tion of Egs.(A3)—(A7). The dashed line shows the result of ap-
proximation by Eq.(11).

nerve impulse$27]. For this reason the solution in the form
of the traveling wave can be found exactly for=0 in the
continuum limit. For definiteness, we will consider the
waves traveling from left to right, so that>0. Because of

the reflection symmetry, for each solution traveling with

speedc there is also a solution traveling with speed.

It is clear that the speetlof the traveling wave should be
determined by the motion of the slip point in front of the
wave. Let the slip event occur for blogkatt=t. Then, for
i>s we haveu;=u, ; so the slip condition from Eq(9)
becomes

Us—1(td)=Uy — (1—u,)(AX)% (10

Since at the onset of the slip=u, anddug/dt=0, at time
t we will have ug=u, + O((t—t¢)?), with us<u, , since

right after the slip the block is accelerated by an excess force.

This means that at some tintg, ; the slip condition from
Eq. (9) will be satisfied for the §+ 1)th block. According to
Eq. (10), this will happen whenAt=ty, ;—t;=0O(AX).
Therefore, on the time scale of order 1 this will correspond t
the motion of the slip point with the speed=Ax/At
=0(1).

To actually calculate the speeaf the front, one needs to

solve the system of coupled equations of motion for the

blocks behind thesth block. This problem in the limit
Ax—0 is considered in Appendix A. The analysis of this
problem shows that the speedf the wave is uniquely de-
termined by the value ofi=u, in front of the wave. Note

that a similar situation takes place in the models of combus

tion (see, for example[18]) and in reaction-diffusion sys-
tems (see, for example[1-6]). The dependence(u,)
found numerically is shown in Fig. 3. We would like to
emphasize that upon the decreasdgfthe speed becomes
independent oA x, providing a well-defined continuum limit

C. B. MURATOV
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however, that the speadis the speed opropagationof the
slip and is not related with the actual speed of individual
blocks in the wave.

As can be seen from Fig. 3, the speed of the traveling
wave diverges as, approaches 1. One can get an analytical
handle on the dependencéu,) by expanding it in inverse
powers ofc (see Appendix A As a result, we get the fol-
lowing interpolation formula which implicitly determines
as a function ol :

2+c?+4c?
8c®\c?—1

This equation gives the dependereiel ) with a few per-
cent accuracy.

Let us introduce the self-similar varialhte=x—ct, where
c=c(uy) (Fig. 3. Since the problem possesses translational
invariance, we can choose the position of the slip point to be
at z=0. Similarly, the stick poinz=—w, with w>0, will
also travel with speed behind the wave. Behind the slip the
blocks slide according to Eq7); so for the wave with speed
¢ we will have

up,=|1+ (1)

(c?=1)u,,—2cyu,+u=0. (12)
The slip condition gives the following initial conditions for
this equation:

u(0)=u,, u,0)=0. (13
The analysis of Eq(12) (see Appendix Bshows that the
structure of the solution changes qualitatively depending on
whether the value ofi, is smaller or larger than the critical
valueu.>0, where the value ofi, is implicitly determined

by

\/Cz(uc) -1

c(uc) 4

'y:

If we haveu, <u., the distribution ofu will asymptoti-

Fally approactu_=0 atz= — behind the wavéFig. 4a)].

In other words, the blocks behind the wave never come to
rest. Therefore, upon passing of the wave the system should
develop a steady creep for small but finite Note that this
will always happen whery>1 since in any case, <1; so
for these values ofy the propagation of multiple shock
waves becomes impossiblsee Sec. V.

A different situation takes place far, >u.. Then the
solution has the form shown in Fig(k), and the widthw of
the traveling wave becomes finiisee Appendix B

m(c®—1)

Thus, in this case the wave propagates as a “self-healing”

(19

for slip propagation. These results are also supported by theulse (compare with[28]). Note that fory>0 we havec

direct numerical simulations of Eq&)—(9).
According to Fig. 3, a traveling wave solution exists for

>c(ug)>1; so the value ofv is bounded from below and
the width of the wave is always greater or of order 1. This

all 0<u,<1. The speed is always greater than 1; that is, justifies the use of the continuum limit fde>k, and y
the considered shock waves are supersonic. The latter is alsel. Furthermore, when, becomes close to 1, the propa-

observed in other models of stick-slip motipgtb,16. Note,

gation speed and therefore the width of the wave grow; so
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uA u A
a) 1r u, b) 1r u,
L — -w e
0 2 : 0 z
U ;
-1F -1F

FIG. 4. Two types of traveling wave solutions) caseu, <u., (b) caseu, >u..

in this case the continuum limit is justified even fgg  approximation, we can assume that the speed of the traveling
~k,. On the other hand, the width goes to zero wheo , wave is given by the dependencéu.) (Fig. 3 in which
becomes small whep<1 [see Eq(15)]; so for sufficiently  now, instead ofi, one should use an instantaneous value of
smallu, andy the continuum limit will become invalid for u right in front of the wave. The latter will play the role of

the description of traveling waves. the slow variable. Thus, the motion of the shocks can be
In the caseau, >u, the value ofu=u_ behind the wave described by the variables(t) which give the positions of
will be (see Appendix B theith shock and the variabless= =1 which give the direc-
tion of their motion.
TyC On large length scales the shock will contribute a discon-
U-=-u.exp - W - (16 tinuity to the distribution ofu in the limit v—0. It can be

included in Eq.(6) describing slow motions in the form of a
From this equation one can see that<0; so right behind 6 function. Therefore, in the presence of the shocks (B).

the wave the system is in the state in which no waves can bg?" Pe rewritten as

further excited. Also, note that when, approaches the

value ofu,, the value ofu_ rapidly approaches zero. utzv—z CiA(U) 8(x—x;+0s)), (18
In the context of earthquakes a shock wave should be !

associated with an individual earthquake. The total displace- . .

mentA=u, —u_ which occurs upon passing of a wave andwhereA is the amplitude of the shock from E@L7) evalu-

which determines the magnitude of the earthquake wilfted a?“f“(xi(‘)’t)' G; is the absolute value of the speed
therefore be of the ith shock, and the last term in th&function repre-

sents the fact that the value vis evaluated right in front of
the wave. Equatioil8) simply says that at the mometthe
1 ] (17)  value ofu jumps fromu(x;(t),t) atx=x;(t) to the new value
u_[u(x;(t),t)] given by Eq.(16).
Having now defined the evolution of the slow variable

TYyC
1+exp(— 4

P91

IV. FREE BOUNDARY PROBLEM we can write down the equation of motion of the shocks in
terms of it:
So far we have been studying traveling wave solutions in
the limit v=0 andu=const in front of the wave. These Xi=S,Ci , (19

solutions are clearly thiastmotions in the system since they
occur on time scales of order 1. On the other hand, althougivherec; is the function ofu, = u(x;(t),t) (Fig. 3).
the accumulation of stress occurs slowly 61, it can lead Equationg18) and(19) are the basic equations of the free
to significant changes in at long times of ordep “!>1; so  boundary problem describing the dynamics of the system for
the latter can be associated with tBlew motions in the v<1 and sufficiently slowly varying initial conditions, as-
system. Therefore, since the fast motions result in the largesuming that no creep occurs in the system during its evolu-
scale changes in, the slip-stick events can be considered astion. These equations have to be supplemented with a way of
singular perturbationgo the slow motions. dealing with the creation and annihilation of shocks. From
A similar situation is realized in other excitable mediathe physical considerations it is clear that a pair of shocks
where the role of singular perturbations is played by themoving toward each other will annihilate. Similarly, when
sharp front§1—6]. A powerful tool in describing the dynam- the value ofu reaches Irecall that our distributions of
ics of such systems is reduction to the free boundary problemary sufficiently slowly; so one can ignore the variationuof
(see, for exampld,18]). In this approach one obtains a rela- in Eq. (9)], a slip event is initiated at the point whene=1,
tionship between the speed of the sharp front and slow variereating a pair of counterpropagating shocks. These features
ables. Using this idea, let us formulate the dynamics of oushould be incorporated into the free boundary problem and
system as a free boundary problem. will be discussed in the following section. Notice that ac-
Let us assume that the distributionwf/aries on a length  cording to Eq(9) the distribution ofu for blocks at rest must
scale much greater than 1. Then, introducing an adiabatibe a continuously differentiable function in the continuum
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g A
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FIG. 5. Periodic wave train. FIG. 6. A source of counterpropagating waves.
limit; so the speeds; of the shocks given by Eq19) will in time depends on the amplitude simply Bs A/v; so the
also be continuously differentiable functions of time. frequency of the shocks at a particular point as the wave train

In writing Eq. (18) we assumed that we always have passes is~A 1. The latter in fact represents a simple form
u(x;(t),t)y>u,, so that the shock waves are always theof the Gutenberg-Richter scaling law with scaling exponent
waves of switching between the blocks with-u, atrestin ~ b=1 [29]. In other words, this exponent would be observed
front of the wave tau=u_ at rest behind the wave. In other in the system under consideration if its dynamics were domi-
words, we do not consider the possibility of the onset ofnated by periodic wave trains. It is interesting to note that the
creep behind the wave. An analysis of creep motion is bevalue ofb actually observed from earthquakes generally lies
yond the scope of the present paper. The condition of thén the range 0.8 b<1.2[30].
absence of creep should in fact be satisfied for a wide class The above arguments are justified as longias>u,, so
of initial conditions. In particular, it is easy to see that athat no creep develops behind the traveling front. Therefore,
wave with u; >u. will never be able to reach the points according to Egs(17) and(21), traveling wave trains exist
whereu<u, if we have only whenL>L ,, where

_ Lmin=v _1C( Uc)Uc - (22

|UX|<C(UC) 1 (20)

Let us now consider another kind of spatiotemporal pat-

provided that the regions with<<u. are initially at rest. The tern that is typical of excitable systems—the source of coun-
condition in Eq.(20) simply means that the wave with speed terpropagating waved—6]. The existence of such a solution

c will never catch up with the point at whioh=u. whenu  js associated with the fact that if there is an inhomogeneous

grows according to Eq6). distribution ofu at rest such that the maximum afis lo-
cated aikx=Xq, then at some point in time the value uwfx)
V. SPATIOTEMPORAL PATTERNS may reach 1, so that the blocks will become unstable creating

Let us now apply the procedure developed in the prec:ed"fl pair of counterpropagating shockBig. 6). After these

. ; . S shocks moved away fromy, the distribution ofu can once

ing section to qutlotemp_oral patterns forming in the SySte"égain have a maximum at=x,; So after some time the
und_er conS|derat|c_Jn. .AS In-any e_zxc_ltable systeIr 6], the value ofu will increase until it reaches 1 and the cycle re-
basic pattern of this kind is a periodic array of shotkave peats

train) traveling with constant velocity. From the results of Thése solutions are indeed realized in our system. Close
the preceding section one can see that a periodic wave tra{g X=X, We can approximate the distribution ofas '
should consist of sharp fronts in which the valueugiimps 0

from u, to u_ followed by refractory regions where
slowly recovers back to, ; so the resulting pattern is saw-
tooth (Fig. 5. In the refractory regiom obeys Eq(6), which

in the frame moving together with the wave with speed
becomesi,= —v/c, wherez=x—ct is the self-similar vari-
able. Therefore, the solution far in the refractory region
which properly matches with the back of one shockzat
=0 and the front of another at= — L, whereL is the period
of the wave train, has the formu=L"Y(z+L)u_

u(x,t)y=1—a(x—xq)2+ vt (23

[see Eq.6)], where we also assumed that the slip occurs at
t=0. This time-dependent distribution ofgives values ofi

in front of the shocks at>0, after the slip occurred, thus
determining the velocity of the shocks. The analysis of the
free boundary problem in this caé&ppendix Q then shows
that right after the slip the positions of the shocks will be

—L"1zu,, where given by
A v+\v’+8a
ch_' (21) Xi=Xo* \bt, b=—%— (24)
v

c=c(u,) (Fig. 3, andA s given by Eq.17). Equation(21) = where the plus and the minus correspond to the shocks
should in fact be obvious from purely geometric consider-propagating to the right and to the left, respectively. Notice
ations. Thus, there exists a family of nonlinear periodic trav-that Eqg.(24) in general shows how to treat the singularity in
eling wave solutions whose speed and period depenthe free boundary problefiSec. I\V) associated with the cre-
strongly on amplitude. Similarly, the periddof this solution  ation of a pair of counterpropagating shocks.
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FIG. 7. Dependenca’(a) from Eg.(26) at y=0.3.

The solution forx;(t) in Eq. (24) then allows us to calcu-
late the distributioru’ after the shocks have passed,

u’(x,t)=u_(1)—a’'(x—Xg)%+vt, (25
wherea’ is given by(see Appendix €
2= —axt A 29
v+\v?+8a
u_(1)=—exp(—my/\1— 7 [see Eq(16)], and

From Eq.(27) one can see that the value gflies in the
range G<k<1. The plot ofa’ as a function ofa at a par-
ticular value ofy is presented in Fig. 7.

From Eq.(26) one can see that there is a maximunuof
atx=0 (a’'>0) when the shocks have passedaf anax.
where

v2(1+k)
amaxzz—Kz- (28)
If this condition is satisfied, after timeT=v ![1

+exp(—myl\1—7?)] the distribution ofu will look exactly
like the one in Eq.23) which we started with, but with a
different value ofa. Therefore, Eq(26) defines an iterative
map for the value oé corresponding to the solutions farat

timesnT, wheren is the number of iterations. Physically, a

source with periodl’ will form at x=0, creating traveling

TRAVELING WAVE SOLUTIONS IN THE BURRIDGE- ...

3853

iterations of the map. Note that because of the fact ¢hat
becomes smaller and smaller with each cycle, the distribu-
tion of u becomes flatter and flatt¢see Eq.(23)], which
means that after a long time the regions in the neighborhood
of the source will tend to synchronize. The characteristic size
R of a region in which the synchronization takes place can be
estimated aR~a; ¥?; so we will haveR~tY2. Also note

that for the same reason if there are two sources with unequal
values ofa<an,, some distanc® apart, after timet~R?

the one with the smaller value afwill overwhelm the one
with the larger value o&. It is then natural to expect that if
the initial distribution ofu has all maxima witha<<a,,,, the
system will eventually synchronize into uniform oscillations
in which all the blocks slide together.

A different situation is realized whea>a,,. In this
case the distribution ofi forming after the shocks moved
away from the origin will be aninimumrather than a maxi-
mum of u; so the next creation of a pair of shocks will not
occur atx=Xq, but rather at different points in space. There-
fore, it is natural to expect that for sufficiently random initial
conditions one would see shocks created and annihilated at
random points in space, creating a kind of spatiotemporal
chaos.

VI. CONCLUSION

Let us now summarize the results of our analysis and
discuss the relationship of our results with those obtained for
other models of stick-slip motion. In the present paper we
analytically investigated the Burridge-Knopoff slider-block
model with the Coulomb friction law, which is different
from the one used in most previous studj€s10,12—16
This difference is expressed in the fact that our friction is a
discontinuous function when the velocity of the block be-
comes zero. As a result, the system is capable of propagating
ultrasonic traveling solitary waves in the limit of zero loader
plate velocity for any value of accumulated stress above the
excitability thresholdu=0. The existence of such solutions
is a characteristic feature of excitable systdihs6].

In the continuum limit the solution in the form of the
traveling shock wave is independent of the short-scale be-
havior of the system, except for the precise form of the de-
pendence of the wave’s velocity on the amount of the accu-
mulated stress in front of the wave. The latter in fact only
weakly depends on the dynamics of the model at short length
scales if the value ofi is sufficiently close to the slipping
thresholdu=1. Note that one might want to calculate the
dependence of the wave velocity on the amount of the accu-
mulated stressi, by formally combining Eq(12) at z=0

waves propagating away from it. Note, however, that everwith the continuum version of Eq9) at z=0. This would
though the period of the source is a constant that does najfive an incorrect result=1/y/1—u,. This means that al-
depend on the initial conditions, the solution represents athough the continuum approximation may be valid for find-
aperiodic process since after each cycle the valueaof ing the wave profile behind the slip point, one still needs to
changes. The latter is represented in Fig. 7. Observe that wsolve the discrete problem at the tip of the wave in order to
always havea’ <a. From Fig. 7 one can also see that afterfind its velocity.

many periods the value afwill tend to zero. The analysis of
Eq. (26) (see also Fig. )fshows that zero is the only fixed
point of the map—a’ for any y. For small enough values

of a Eq. (26) can be approximated aa’'=a[l1-2a(1l
+k)/v?]. It is then easy to show that aftee>1 iterations
we will havea,=v?/[2n(1+ k)], wherea, is the result oh

In the limit of vanishing loader plate velocity the only
parameter in the model is the dimensionless coefficient of
viscous frictiony. All our analysis was performed for arbi-
trary values ofy; so it is also applicable to the cage=0,

i.e., when the viscous friction is absent. This case, however,
has one special feature, which is that fgr0 we haveu,
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=0 [see Eq(14)]; so asu approaches zero the speed of the ~As was already discussed above, the propagation speed of
wave approaches 1 and the widthgoes to zerdsee Eq. the wave depends on the short-scale dynamics of individual
(15)]. Therefore, for a fixed value afx<1 the continuum blocks. Therefore, in order to be able to perform_ numerical
limit will no longer be justified for the description of the Simulations of the models under consideration in the con-
waves when becomes sufficiently close to zero. Also, Whentmuum limit, one has to use a very small discretization of

) time. This should make direct simulations of our model
y=0 the amplitudeA=2u.. of these wavegsee EQ.(17)]  wer difficult. On the other hand, we showed that if the
will be able to become arbitrarily small.

. . . initial conditions vary sufficiently slowly, the dynamics of
According to the results of our analysis, the solution ing,q ystem reduces to the motion of individual shock waves
the form of the traveling shock wave, as well as a periodi¢gee ‘Sec. Iy, Therefore, by reformulating the dynamics of
wave train of a given period, is unique in the limit of van- y,o nroplem in terms of the free boundary problem one can
|sh|ngly small loader plate \_/elocny, and its speed is ur?'q.ue'ydramaticalIy increase the speed of the simulations, thus being
Qetermlned by the value ofin the front of the wave. Thisis pia 10 observe the dynamics for much longer times. This
in contrast with the results of Langer and Tafih] and  ghqu1q be important in the statistical analysis of our system,
I\/I_ygrs and Lange[l@] for mode.ls with veIo.C|ty-weaken|ng especially in the context of earthquak@ee alsd12—14).
friction where they find a continuous family of such solu- ) ¢t ys'see how the results obtained from the studies of our
tions and therefore a se_zlectlon problem. _ . model should translate to real stick-slip problems. Consider,
Note that systems W.Ith veIocﬂy-wgakenmg_ friction trans-¢,, example, a Bristol board of thicknebs=2 mm lying on
form to the model considered by us in the limit of SM¥ll, 5 5;;rface made of the same material under external pressure
where V; is the characteristic velocity of variation of the p and pulled at the top21]. The coefficientse, and g of
friction force. Indeed, if the characteristic speed of a blocky,e static and the sliding friction for these surfaces were
dur!ng the _sllp exceeo\s{f, the frlctlor_l force will drop very _found to beu,=0.37 andus=0.31, respectively21]. The
rapidly, acting in the same way as in our model. To obtalnmemory length which we should use for the distaadee-
the criterion of smallness of;, we note that the effect of . can the blocks was found to be= 1 um. A single block
the velocity dependence of the friction is most pronounced ify the Byrridge-Knopoff model should be associated with a
the slip_region, where, accordmg to EGLO), u~Ax piece of the board of dimensioas<aX h; so the massn of
= Vkp/ke, where we assumett-1 (uis not near the thresh-  he hjock should ben=2.4x 10712 kg, where we used the
old value u=1). In thg .orlglnal varlab.lesti/dt~(fr density p=1.2 glcn?. From the speed of sound
—fs)/vkem; so the conditiorV;<dX;/dt gives =ak./m [Eq. (3)] we can calculate the values kf and
kp=kc(ﬂ'a/2h)2 (see the end of Sec. )ll Using c
=4000 m/s, we findk,=3.8x10" N/m and k,=2.3
x 10t N/m. The friction force jump per single block is
—fs=pa®(u,—us). One can see that the condition of Eq.

This formula should in fact be obvious from physical con- (29 With V;=10 ° m/s (see[21)) is satlsfle_c; if p=2
siderations. Similarly, one should recover our results for the* 10° Pa=20 atm, which gived, —f;=1.2x10"" N. For
creep-slip models considered [ifi] if the characteristic ve- this value ofp the characteristic sliding velocity will b
locity of variation of the friction force is small enough. ~(f,—f)/\Vkm=1.6 cm/s. The displacemeniX in a

In contrast, if the condition opposite to the one in E2f)  single wave can also be estimated=2(f, —f)/k,=1
holds, no traveling shock waves can be realized in the conx 10~ 8 m. The latter quantity turns out to be quite small.
tinuum limit. This can be seen from the following argument. Note that bothAX and X increase a® increases. Also,
In a traveling wave the profile ai should be described by smaller pressureswould be needed for smaller valuestof
Eq. (12) in which, in the case of the velocity-weakening From [21] one can calculatex=6.7x10"% kg/s for this
friction, one should drop the term 2cyu, and replacei by v aJue ofp, leading toy=0.45.
u—1 close to the slip point. There we must hayg<0; so, In the present paper we studied a perfectly homogeneous
according to the modified E¢12), we will havec<1 inthe  system without any external noise. It is clear that in real
traveling wave. On the other hand, the propagation of subsystems some degree of noise should be present. It is inter-
sonic waves in the system is impossible since from the disesting to know what effect the introduction of randomness
persion relationw?=1+k? for the waves in the absence of will have on the behavior of the traveling waves. Here one
friction we get that their phase velocit=w/k=\1+k 2>  can distinguish two different situations. If one adds some
>1 for all k. On the other hand, numerical simulations showsmall randomness in the parameters of individual blocks,
that in discrete models with velocity-weakening friction trav- such as the friction coefficients, spring constants, and so
eling shock waves are indeed observed. However,Afier  forth, one would expect the renormalization of the speed of
<1 these waves move with speeds very close to the speed tife traveling waves. The other kind of noise would result in
sound and their width is just a few lattice spacirigsless sudden transitions of the blocks at rest to sliding. This kind
one is close to the threshold=1; see alsd15,1€). One of noise can be readily incorporated into our free boundary
should therefore expect that in the continuum limit only dis-problem by introducing the generation of pairs of counter-
continuous shocks traveling with the speed of sound are fegropagating waves at random points in space. Here the open
sible, in contrast to the situation studied in the present papeguestion is how the frequency of this generation should de-
This is a crucial distinction of the Burridge-Knopoff model pend on the distance to the slipping threshold. It is also in-
with velocity-weakening friction and the one with the Cou- teresting how the presence of such a noise would affect the
lomb friction law (Fig. 2) studied by us. wave statistics.

(29
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APPENDIX A

Since the variation ofy; leading to the slip event is of
orderAx? and is small for small\x, for the blocks near the

slip point one can neglect both the variation wgfand the
term —2ydu; /dt in Eq. (7); so in the limitAx— 0 the right-
hand side of this equation simply becomes— 1= const.
For convenience, let us introduce the new variablasdv; ,

such that

2

;
t=tg+7AX, U=u,—u,(Ax)? vit =] (A1)

Since atr=0 thesth block just slipped, we must haysee
Eq. (10)]

vs-1(0)=—— (A2)
+
with the initial conditions
vs(0)=0, v{(0)=0, (A3)

where the prime denotes the derivative with respect.to
In the limit Ax—0 Eg.(7) can be written as

dzvi .
_de :Ui+1+vi_1_20i, 1<S, (A4)
d?v, ?
F:Ui,l—ZUi—?, I=S8. (A5)
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1 2
C:1+EU+.

(A9)
The problem in Eqs(A3)—(A7) can be treated analyti-
cally by expanding its solution in the powersof®. Indeed,
if cis large, forr<c~1<1 the right-hand sides in EqgA4)
and(A5) can be neglected; so the solution of EGs3)—(A7)
for k=0 in the leading order it~ will be
k> k7
vgf?k:ﬁ = (A10)
Physically, this corresponds to the situation in which the
springs between the blocks are absent.
To calculate the first-order correctiart? , we usev?;
in Eq. (A5) to obtain

" 2 23 A
US

—4—C2+ &— ﬂ (All)

This solution is then used to fix through E¢86) and (A7)
the initial condition in Eq.(A4) with i=s—1 to the next

order inc™1. Using the solutions?, v, , andv'®, in
Eq. (A4), one can then calculate”); :
1) 3 57 72
US,]_:W'F@'FF. (A].Z)

The knowledge ot (Y, andv (") then allows us to calculate

the next-order correction{®) by substituting them into Eq.

. . . . 5):
These equations essentially describe a linear array of ungfa‘ )

masses connected by springs with spring constant 1, with the
sth mass attached to a rigid wall and acted upon by a time- Vg

dependent force- 72/2.

If the wave moves with speeq] after timer= 1/c, which
corresponds tat=Ax/c [see Eq(Al)], it should move the
distanceAx to the right. This means that at tintg, ; =t
+At we must haveu;_(ts) =u;(ts+At), u/_,(ts)=u/(ts
+At), or in terms of the new variables

1
vi—1(0)=vi(c™H+-=

202 ’ (AG)

1
vi_1(0)=v{(c™H+ e (A7)

372 573 7 7°

(2) _ R T
16c% 3603 60c | 360

(A13)

Substituting the obtained solution fog into Eq. (A2) and
using Eq.(A6) with i=s—1, we get approximately
C1-uy

16c®  u,

(A14)

Note that this procedure can be continued to an arbitrary
order inc™!, although the calculation then becomes rather
cumbersome. Let us only quote the result that the correction
to the left-hand side of EqA14) due to the next order terms
will be 0.2719¢8.

Finally, combining Eq(A14) with Eq. (A9), we arrive at

Note that these conditions introduce a feedback into Eqshe interpolation formula given by Eql1).

(A4) and (A5). Also, the solution of Eqs(A4) should be

matched with the continuum profile behind the tip, which

satisfies Eq(12). We should therefore have

k2

Usszm, k>1.

(A8)

Equations(A3)—(A7) can be solved numerically by an

iterative procedure. Then, calculating the valuevgfc ™),
using Eq.(A6) as a function ofc, one can relate it ta,

APPENDIX B

Here we solve Eq(12) with the initial conditions given
by Eq.(13) for arbitraryy. Let us introduce the new variable
¢é=27/\Jc>~1 and a constany=cy/\/c>—1, wherec is a
function ofu, (Fig. 3. Then, Eq.(12) can be rewritten as

Uge— 2yUz+U=0, (B1)

through Eq.(A2). The results of this numerical solution for with the same initial conditions written in terms &f
c>1 are presented in Fig. 3. These results also show that

close tou, =0 we have

u(0)=u;, ug0)=0. (B2)
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Two situations are possible here. If we haye 1, both
roots of the characteristic equation of E&§1) are real; so
the solution has the form

u=aefr V7 -1 4 petf(r—V-1). (B3)

Using the initial conditions from EqB2), we obtain for the
coefficientsa andb

u, y U, y
a=—| 1-——|, b=—|1+—=|.
2 72_1 2 ,y2_1

(B4)

From the solution we see that behind the wave the distribul-ng to Eqs.(19)

C. B. MURATOV
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APPENDIX C

When a pair of counterpropagating shocks is created, their
speed will be large, since in the neighborhoodgthe value
of u will be close to 1. This allows us to use E@§\14) and
write

1
Ci=——— (C1

b V2[1-u(x b)]

for x; close toxy. Note that Eq(C1) expresses the fact that
for u close to 1 the coupling of the blocks through the lon-
gitudinal springs becomes inessenfis¢ée Appendix A

Without any loss of generality, we can pyt=0. Accord-
and(C1), we have approximately

tion of u asymptotically approaches zero. This means that we

haveu_ =0, but the system comes to rest onlyzat—; so

the widthw of the wave is infinite. The form of the solution

is shown in Fig. 4a).

In contrast, wheny<1, the roots of the characteristic
equation of Eq(B1) become complex conjugate; so the so-

lution has the form

u=aecog £V1—7?)+beésin(£V1—72).

Substituting the initial conditions from E¢B2), we obtain

(BS)

u,y

a=U+, b:_ — (B6)
1—7v?

1

V2(axi—vt)

for not too large|x;| andt, with the initial conditionx;(0)
=0. The solutionx;(t) that satisfies this equation and the
initial condition has the fornx;= = \/bt, where the constant
b has to be determined. Substituting this expressiorx;fd)
into Eqg.(C2), we obtain the following quadratic equation for
b:

Xi:i

(C2

ab’—vb—2=0. (C3)

According to the definition ob, only the positive solution of
this equation has physical meaning. Taking this into account,

In constructing the full solution one should also take intowe obtain that the value df is given by Eq.(24).

account that the block will stick back when it comes to rest,

which will happen wheru,=0 for vanishingv. According
to Egs.(B5) and(B6), this will occur atz=z,=—w, where

™
Vi-7

Behind the stick point the value af will remain constant
equal tou_, with

w= (B7)

(B8)

my
u_=—-usexp — .
+ /1_;2

Going back toy, we can rewrite the equations above as Eqgs.
(15) and (16), respectively. The form of the solution in this

case is shown in Fig.(8).

From the solution of Eq(C2) one can see that the shock
reaches poink at the moment;(x)=x?/b. Right after the
shocks have passed the new value af the moment;(x) is
given by Eq.(16). Therefore, according to E¢6) the distri-
butionu’ at a pointx and timet>t;(x) behind the shock is
given by

u’ (x,t) =u_[ux,t;(x))]+vt—vt;(x), (C9
whereu is evaluated right before the shock reacke&ince
uin Eq. (C4) is close to 1, we can Taylor expand the depen-
denceu_(u,) in this equation and keep only the first two
terms. As a result, we obtain

u'(x,t)=u_(1)+« axz—T — 5 Tt (C5)

sz) X2

The solutions obtained above are the exact traveling waverhere k= —du_/du, evaluated atu, =1. Using the ex-
solutions of Eqs(6)—(9) in the casev=0. As can be seen plicit expression foru_ together with Eq(C1) in Eq. (16),
from the construction, the traveling wave solution is uniqueone arrives at Eq27). Then, using the value df from Eq.

for any given value ofi, .

(24), Eq. (CH can be transformed into ER5).
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