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Traveling wave solutions in the Burridge-Knopoff model

C. B. Muratov
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012

~Received 9 June 1998!

The slider-block Burridge-Knopoff model with the Coulomb friction law is studied as an excitable medium.
It is shown that in the continuum limit the system admits solutions in the form of self-sustained shock waves
traveling with constant speed which depends only on the amount of accumulated stress in front of the wave.
For a wide class of initial conditions the behavior of the system is determined by these shock waves and the
dynamics of the system can be expressed in terms of their motion. The solutions in the form of the periodic
wave trains and sources of counterpropagating waves are analyzed. It is argued that depending on the initial
conditions the system will either tend to synchronize or exhibit chaotic spatiotemporal behavior.
@S1063-651X~99!02704-X#

PACS number~s!: 83.50.Tq, 91.30.2f, 83.50.By, 05.45.2a
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I. INTRODUCTION

Propagating self-sustained waves~autowaves! and more
complex spatiotemporal patterns are characteristic of ex
able media of different nature. A typical example of such
phenomenon is the burning of black powder in a safety fu
When the fuse is ignited at one end, the exothermic reac
releases heat which is then spread out by heat diffus
Thus, the neighboring regions of the fuse ignite, leading
self-sustained propagation of the combustion front. The p
nomenon of the nonattenuated propagation of waves i
fact common for a variety of physical, chemical, and biolo
cal systems@1–6#. Traveling waves are experimentally ob
served in semiconductor and gas plasma, semiconductor
superconductor structures, combustion systems, active
cal media, magnetic media under illumination, autocataly
chemical reactions, and nerve and heart tissue~see@1–6# and
references therein!.

In order for self-sustained waves to be feasible, the s
tem must possess two basic ingredients. First, the sys
must beexcitable; that is, there has to be a threshold belo
which the perturbation of the steady homogeneous stat
the system decays, while perturbations of larger amplit
grow. In the example above, a sufficient amount of hea
needed to ignite black powder. Second, there has to b
coupling between the regions of the system at differ
points in space. In the case of the safety fuse such a coup
is provided by heat diffusion, leading to a spread of the te
perature and ignition of powder in front of the combusti
zone. Thus, prototype systems exhibiting self-sustai
waves are reaction-diffusion systems@1–6#.

Recently, it was pointed out that an entirely different cla
of systems may be considered as excitable@7#. These are
elastic media with friction exhibiting stick-slip motion. Bot
experimental observations and numerical simulations sh
that such systems are capable of supporting steadily pr
gating solitary waves in the form of shocks@7–10#. These
systems are also of special interest because they are use
PRE 591063-651X/99/59~4!/3847~11!/$15.00
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modeling the dynamics of earthquakes@7–17#. It is clear that
systems exhibiting stick-slip motion have both necessary
gredients of excitable systems. The threshold behavior h
is due to static friction, which prevents any motion in th
system until some critical amount of stress is accumula
The coupling of the elements of the system at differe
points in space is due to the nonlocality of elastic stress.

Singular perturbation techniques proved to be very eff
tive in treating problems of traveling wave propagation
reaction-diffusion systems@1–6,18,19#. These methods use
strong separation of time scales in the problem to decomp
the dynamics of the system into fast and slow motio
Clearly, this situation is also realized in models of stick-s
motion where~especially in the context of earthquakes! there
is a strong separation of time scales between fast slipp
events and slow accumulation of stress. It is therefore adv
tageous to try to apply these techniques to the problem
stick-slip motion.

In this paper we present a study of the Burridge-Knop
slider-block model@11# with the Coulomb friction law. We
will show that for a sufficiently slowly spatially varying dis
placement variable the dynamics of the system is domina
by self-sustained traveling shock waves. We will study t
properties of these waves and reformulate the dynamic
the system in terms of their motion.

Our paper is organized as follows. In Sec. II we introdu
the governing equations for the model we study and disc
the features of the friction law used, in Sec. III we constru
the solutions in the form of self-sustained traveling sho
waves, in Sec. IV we reformulate the dynamics of the syst
in terms of the motion of these shock waves and study g
eral properties of the reduced problem, in Sec. V we anal
two different types of solutions, and in Sec. VI we dra
conclusions.

II. MODEL

The Burridge-Knopoff model consists of a on
dimensional array of blocks of massm resting on a frictional
3847 ©1999 The American Physical Society
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3848 PRE 59C. B. MURATOV
surface@11#. The blocks are connected together by sprin
with spring constantkc and pulled by a loader plate movin
with constant speedV via another set of springs havin
spring constantskp ~see Fig. 1!. Let us measure the displace
mentXi of the i th block relative to the point of attachment o
the i th loader spring. In this case the total forceFi acting on
the i th block is given by

Fi5kc~Xi 111Xi 2122Xi !2kpXi2 f i , ~1!

wheref i is the force of friction. The dynamics of the syste
is completely determined by the equation of motionmẌi
5Fi , provided that the friction law is specified. Note th
the friction forcef i is the only nonlinearity in the equation o
motion. Clearly, the dynamics of the system will signi
cantly depend on the particular choice of the friction la
Recently, a lot of results were presented on the dynamic
the Burridge-Knopoff model in the case of the velocit
weakening friction law@9,10,12–16#. A characteristic feature
of the Burridge-Knopoff model with this form of friction is
its highly chaotic dynamics that occurs on all length sca
down to the smallest length scalea and, therefore, the ab
sence of the proper continuum limit@12#.

In contrast to most previous studies, here we adopt
Coulomb friction law, which is applicable to clean dry su
faces~see, for example,@20#!. Namely, we will characterize
the friction force by the value of the static frictionf r and the
kinematic friction f s, f r , where f r and f s are positive con-
stants. Thus, the block will remain at rest ifFi, f r . WhenFi
reachesf r the block starts to move~slips! and the friction
force dropsinstantaneouslyfrom the value off r to the value
of f s . When the block comes to rest~sticks!, static friction
turns on again. Also, we will supplement the friction for
with the viscous friction termf viscous(v)5av, wherev is the
velocity of the block anda is a constant~Fig. 2!. Note that
this kind of friction law was considered already in the orig
nal paper of Burridge and Knopoff@11# and is observed in
the friction experiments and their analogs@21–25#. Also note

FIG. 1. The Burridge-Knopoff model.

FIG. 2. Friction force as a function of the velocity.
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that this model was recently studied numerically in Ref.@17#
~although for parameters different from those considered
this paper!.

We would like to emphasize that in contrast to t
velocity-weakening friction law, for which the kinemati
friction force is a continuous function of the block velocity
v50, in our friction law the forcef has adiscontinuityat v
50, reflecting the fact that the coefficient of static friction
typically larger than that of kinematic friction. As a result o
this difference, the accumulated stressacceleratesthe block
at the onset of motion, releasing potential energy. As we w
see below, this provides the sustaining force for the trave
waves studied in the following section. Also, as we w
show below, this ensures the existence of the proper c
tinuum limit asa→0.

Let us now formulate the equations of motion for th
blocks in the case of the friction law introduced above. R
call that the displacementsXi are measured relative to th
loader plate; so they are defined in the reference frame m
ing relative to the surface with velocityV. Therefore, when
the blocks are at rest, their equation of motion becomes

Ẋi52V. ~2!

When the block slides, its equation of motion changes to

mẌi5kc~Xi 111Xi 2122Xi !2kpXi2 f s2a~Ẋi1V!.
~3!

The transition to sliding~slip! occurs when the forceFi
reaches the value off r :

kc~Xi 111Xi 2122Xi !2kpXi5 f r . ~4!

In other words, the equation of motion of a block chang
from Eq. ~2! to Eq. ~3! when the condition in Eq.~4! is
satisfied. Of course, the block comes back to rest whenẊi
52V during sliding.

Let us introduce the following dimensionless quantities

x85
x

a
Akp

kc
, t85tAkp

m
, ui52

kpXi1 f s

f r2 f s
, ~5!

wherea is the distance between the attachment points of
loader springs~Fig. 1!. The dimensionless displacement va
ableui is chosen in such a way that the system is excita
only atui.0 @see Eq.~1!; in order for slip to occur, the force
Fi must exceed the valuef s of sliding friction#, while the
blocks will always slide forui.1 @see Eq.~4!#.

If kc@kp , one can naturally go to the continuum limit b
making a substitutionXi 111Xi 2122Xi→a2 (]2X/]x2).
This is a good approximation when the length scale of
variation ofXi is of order 1 in the new variables. Using th
variables in Eq.~5!, we rewrite Eqs.~2! and~3!, respectively,
as follows:

ut5v, ~6!

utt5uxx2u22g~ut2v !, ~7!

where we introduced dimensionless constants
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g5
a

2Akpm
, v5

VAkpm

f r2 f s
, ~8!

and dropped the primes for simplicity of notation. Note th
in the continuum limit in addition to tracking the motion o
individual blocks, one also has to follow the motion of th
slip points. Similarly, one should keep track of the positio
of the points at which the blocks come to rest. The latter
determined by the condition in Eq.~6! during sliding.

Determining the position of the slip points in the co
tinuum limit turns out to be a rather complicated proble
since the position of the slip will still depend on the loc
dynamics of the blocks. In the discretized form, the slip co
dition @Eq. ~4!# in the variables of Eq.~5! becomes

ui 111ui 2122ui

~Dx!2
5ui21, ~9!

whereDx5Akp /kc. We will get back to this problem in the
following section where we will show that in the continuu
limit the dynamics of the slip becomes independent ofDx.

Equations~6!–~9! are the constitutive equations that w
be studied in the rest of the paper. As can be seen from
~5!, we chose time and length scales so that the spee
sound in the system is equal to 1. The time scale is de
mined by the period of oscillations of an isolated block d
to the loader spring. Note that in the continuum limit t
characteristic speed of a block during sliding is much sma
than the speed of sound. This can be seen from Eq.~5! if one
assumesut;1, measuresXi in the units of Eq.~5!, and uses
a natural assumption thatf r2 f s!akp . The behavior of the
system is determined only by two parameters: the dim
sionless dissipation parameterg which measures the effec
of viscous friction and the dimensionless rate of accumu
tion of stressv. In the following we will considerv to be
small, which expresses the fact that the time scale of ac
mulation of stress is much longer than that of the motion
an individual block during sliding.

Finally, let us discuss the applicability of the Burridg
Knopoff model in the context of real physical systems exh
iting stick-slip motion. In a real system one should replac
one-dimensional array of masses between the loader p
and the frictional surface by an elastic medium of cert
thicknessh. A straightforward extension of the Burridge
Knopoff model would therefore be a two-dimensional arr
of masses connected by springs whose one edge is rig
attached to the loader plate and the other slides on the
tional surface. Naturally, the thickness of such a medi
should greatly exceed the microscopic length scalea. The
stick-slip motion in such a medium is due tosurface waves
@26#. The dispersion of these waves is given byv25k2

1(p/2h)2(112n)2, where n is an integer and the trans
verse speed of sound was taken to be 1. The main diffic
here is that instead of a single displacement variableu one
has to deal with a large number of modes with differentn. A
simplification that is presented by the Burridge-Knopo
model consists of lumping up these modes into a sin
mode with aneffectivestiffnesskp @Eq. ~3!#. It is clear that
the dominant modes will be those with smalln; so we must
havekp;(a/h)2kc!kc . Thus, in a physically relevant situ
t
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ation one should consider the continuum limitDx→0 of the
Burridge-Knopoff model. In short, this is merely a simplifi
cation of the mathematical handling of the elastic dynam
A much more important assumption is that the friction r
sponse to the motion of the medium is instantaneous and
zero correlation length. It would be incorrect to think of th
‘‘size’’ of the block a as an atomic distance. Rather, th
value of the parametera should have a magnitude of th
correlation ~memory! length of the cooperative effects re
sponsible for the surface friction~see, for example,@21# and
references therein!. Then the response of the system can
considered to be instantaneous if the characteristic velo
of the blocks is greater thana/tstick, wheretstick is the char-
acteristic sticking time.

III. TRAVELING WAVES

Let us now demonstrate that Eqs.~6!–~9! admit solutions
in the form of traveling shock waves with constant speedc in
the limit of vanishingly smallv. But before we do that, let us
see what kind of dynamics one would observe if there are
slip events and the initial distribution ofu is taken to be a
sufficiently slowly varying distributionu0(x) ~the latter en-
sures that no slip events will occur at short times!. In this
case the dynamics is trivial: we will haveu(x,t)5u0(x)
1vt, as long as no slip events occur@see Eq.~6!#. From this
one can see that the characteristic time scale of accumula
of stress isv21@1, whenv is small. In other words, forv
!1 on the time scale of order 1 one will not see any mot
with the distribution ofu fixed to u0(x)1C, whereC is a
constant. In particular, if one starts with the uniform initi
conditions, one will haveu5u1 , whereu1 is some constan
less than 1. The other possible situation when the dynam
of the system becomes trivial is steady creep, when all
blocks move together with the loader plate; so we sim
haveu52gv.0 for v!1 @see Eq.~7!#.

Consider the system withu5u1 andv50. As was noted
in the previous section, whenu1,0 slip events cannot oc
cur; so if one slightly moves a particular block, it wi
quickly move to a new equilibrium position and no signi
cant changes will occur. A different situation is realized f
0,u1,1 when the system becomes excitable. Then, i
single block is slightly moved, it will accelerate, releasin
the potential energy accumulated inu1 . As a result of this
acceleration, the force acting on the adjacent blocks will
crease, resulting in slipping of the adjacent block that wa
rest. This avalanchelike process will go on, leading to
formation of the shock wave that releases the accumula
stress, so thatu changes to a new lower value ofu2 . The
situation here resembles a great deal the combustion of
safety fuse discussed in the Introduction. Thus, for 0,u1

,1 a small perturbation ofu may lead to a significan
change of the state of the system, switching it fromu5u1 to
u5u2 . As in other excitable systems@1–6#, it is natural to
expect that such a perturbation will transform at long tim
to a shock wave traveling with constant velocityc. Numeri-
cal simulations of Eqs.~6!–~9! with v50 show that this
indeed happens in our model.

Since all the ‘‘nonlinearity’’ in the problem is containe
in the slip condition given by Eq.~9!, our system is not
unlike piecewise-linear model used to study propagation



e

ith

e
e

rc

t

th

is
-

u
-

o

t
t

or
,
a

al

ing
cal

nal
be

e

r

on
l

to
ould

k

g’’

is

-
o

-
p-

3850 PRE 59C. B. MURATOV
nerve impulses@27#. For this reason the solution in the form
of the traveling wave can be found exactly forv50 in the
continuum limit. For definiteness, we will consider th
waves traveling from left to right, so thatc.0. Because of
the reflection symmetry, for each solution traveling w
speedc there is also a solution traveling with speed2c.

It is clear that the speedc of the traveling wave should b
determined by the motion of the slip point in front of th
wave. Let the slip event occur for blocks at t5ts . Then, for
i .s we haveui5u1 ; so the slip condition from Eq.~9!
becomes

us21~ ts!5u12~12u1!~Dx!2. ~10!

Since at the onset of the slipus5u1 anddus /dt50, at time
t we will have us5u11O„(t2ts)

2
…, with us,u1 , since

right after the slip the block is accelerated by an excess fo
This means that at some timets11 the slip condition from
Eq. ~9! will be satisfied for the (s11)th block. According to
Eq. ~10!, this will happen whenDt5ts112ts5O(Dx).
Therefore, on the time scale of order 1 this will correspond
the motion of the slip point with the speedc5Dx/Dt
5O(1).

To actually calculate the speedc of the front, one needs to
solve the system of coupled equations of motion for
blocks behind thesth block. This problem in the limit
Dx→0 is considered in Appendix A. The analysis of th
problem shows that the speedc of the wave is uniquely de
termined by the value ofu5u1 in front of the wave. Note
that a similar situation takes place in the models of comb
tion ~see, for example,@18#! and in reaction-diffusion sys
tems ~see, for example,@1–6#!. The dependencec(u1)
found numerically is shown in Fig. 3. We would like t
emphasize that upon the decrease ofDx the speedc becomes
independent ofDx, providing a well-defined continuum limi
for slip propagation. These results are also supported by
direct numerical simulations of Eqs.~6!–~9!.

According to Fig. 3, a traveling wave solution exists f
all 0,u1,1. The speedc is always greater than 1; that is
the considered shock waves are supersonic. The latter is
observed in other models of stick-slip motion@15,16#. Note,

FIG. 3. The dependencec(u1). Results of the numerical solu
tion of Eqs. ~A3!–~A7!. The dashed line shows the result of a
proximation by Eq.~11!.
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o

e
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however, that the speedc is the speed ofpropagationof the
slip and is not related with the actual speed of individu
blocks in the wave.

As can be seen from Fig. 3, the speed of the travel
wave diverges asu1 approaches 1. One can get an analyti
handle on the dependencec(u1) by expanding it in inverse
powers ofc ~see Appendix A!. As a result, we get the fol-
lowing interpolation formula which implicitly determinesc
as a function ofu1 :

u15S 11
21c214c4

8c5Ac221
D 21

. ~11!

This equation gives the dependencec(u1) with a few per-
cent accuracy.

Let us introduce the self-similar variablez5x2ct, where
c5c(u1) ~Fig. 3!. Since the problem possesses translatio
invariance, we can choose the position of the slip point to
at z50. Similarly, the stick pointz52w, with w.0, will
also travel with speedc behind the wave. Behind the slip th
blocks slide according to Eq.~7!; so for the wave with speed
c we will have

~c221!uzz22cguz1u50. ~12!

The slip condition gives the following initial conditions fo
this equation:

u~0!5u1 , uz~0!50. ~13!

The analysis of Eq.~12! ~see Appendix B! shows that the
structure of the solution changes qualitatively depending
whether the value ofu1 is smaller or larger than the critica
valueuc.0, where the value ofuc is implicitly determined
by

g5
Ac2~uc!21

c~uc!
. ~14!

If we haveu1,uc , the distribution ofu will asymptoti-
cally approachu250 atz52` behind the wave@Fig. 4~a!#.
In other words, the blocks behind the wave never come
rest. Therefore, upon passing of the wave the system sh
develop a steady creep for small but finitev. Note that this
will always happen wheng.1 since in any caseu1,1; so
for these values ofg the propagation of multiple shoc
waves becomes impossible~see Sec. V!.

A different situation takes place foru1.uc . Then the
solution has the form shown in Fig. 4~b!, and the widthw of
the traveling wave becomes finite~see Appendix B!:

w5
p~c221!

Ac2~12g2!21
. ~15!

Thus, in this case the wave propagates as a ‘‘self-healin
pulse ~compare with@28#!. Note that forg.0 we havec
.c(uc).1; so the value ofw is bounded from below and
the width of the wave is always greater or of order 1. Th
justifies the use of the continuum limit forkc@kp and g
;1. Furthermore, whenu1 becomes close to 1, the propa
gation speedc and therefore the width of the wave grow; s
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FIG. 4. Two types of traveling wave solutions:~a! caseu1,uc , ~b! caseu1.uc .
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in this case the continuum limit is justified even forkc
;kp . On the other hand, the widthw goes to zero whenu1

becomes small wheng!1 @see Eq.~15!#; so for sufficiently
small u1 andg the continuum limit will become invalid for
the description of traveling waves.

In the caseu1.uc the value ofu5u2 behind the wave
will be ~see Appendix B!

u252u1expS 2
pgc

Ac2~12g2!21
D . ~16!

From this equation one can see thatu2,0; so right behind
the wave the system is in the state in which no waves ca
further excited. Also, note that whenu1 approaches the
value ofuc , the value ofu2 rapidly approaches zero.

In the context of earthquakes a shock wave should
associated with an individual earthquake. The total displa
mentA5u12u2 which occurs upon passing of a wave a
which determines the magnitude of the earthquake
therefore be

A5u1F11expS 2
pgc

Ac2~12g2!21
D G . ~17!

IV. FREE BOUNDARY PROBLEM

So far we have been studying traveling wave solutions
the limit v50 and u5const in front of the wave. Thes
solutions are clearly thefastmotions in the system since the
occur on time scales of order 1. On the other hand, altho
the accumulation of stress occurs slowly forv!1, it can lead
to significant changes inu at long times of orderv21@1; so
the latter can be associated with theslow motions in the
system. Therefore, since the fast motions result in the la
scale changes inu, the slip-stick events can be considered
singular perturbationsto the slow motions.

A similar situation is realized in other excitable med
where the role of singular perturbations is played by
sharp fronts@1–6#. A powerful tool in describing the dynam
ics of such systems is reduction to the free boundary prob
~see, for example,@18#!. In this approach one obtains a rel
tionship between the speed of the sharp front and slow v
ables. Using this idea, let us formulate the dynamics of
system as a free boundary problem.

Let us assume that the distribution ofu varies on a length
scale much greater than 1. Then, introducing an adiab
be

e
e-
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e
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ri-
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approximation, we can assume that the speed of the trave
wave is given by the dependencec(u1) ~Fig. 3! in which
now, instead ofu1 one should use an instantaneous value
u right in front of the wave. The latter will play the role o
the slow variable. Thus, the motion of the shocks can
described by the variablesxi(t) which give the positions of
the i th shock and the variablessi561 which give the direc-
tion of their motion.

On large length scales the shock will contribute a disc
tinuity to the distribution ofu in the limit v→0. It can be
included in Eq.~6! describing slow motions in the form of
d function. Therefore, in the presence of the shocks Eq.~6!
can be rewritten as

ut5v2(
i

ciA~u!d~x2xi10si !, ~18!

whereA is the amplitude of the shock from Eq.~17! evalu-
ated atu15u„xi(t),t…, ci is the absolute value of the spee
of the i th shock, and the last term in thed function repre-
sents the fact that the value ofu is evaluated right in front of
the wave. Equation~18! simply says that at the momentt the
value ofu jumps fromu„xi(t),t… at x5xi(t) to the new value
u2@u„xi(t),t…# given by Eq.~16!.

Having now defined the evolution of the slow variableu,
we can write down the equation of motion of the shocks
terms of it:

ẋi5sici , ~19!

whereci is the function ofu15u„xi(t),t… ~Fig. 3!.
Equations~18! and~19! are the basic equations of the fre

boundary problem describing the dynamics of the system
v!1 and sufficiently slowly varying initial conditions, as
suming that no creep occurs in the system during its evo
tion. These equations have to be supplemented with a wa
dealing with the creation and annihilation of shocks. Fro
the physical considerations it is clear that a pair of sho
moving toward each other will annihilate. Similarly, whe
the value ofu reaches 1@recall that our distributions ofu
vary sufficiently slowly; so one can ignore the variation ofu
in Eq. ~9!#, a slip event is initiated at the point whereu51,
creating a pair of counterpropagating shocks. These feat
should be incorporated into the free boundary problem
will be discussed in the following section. Notice that a
cording to Eq.~9! the distribution ofu for blocks at rest must
be a continuously differentiable function in the continuu
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3852 PRE 59C. B. MURATOV
limit; so the speedsci of the shocks given by Eq.~19! will
also be continuously differentiable functions of time.

In writing Eq. ~18! we assumed that we always ha
u„xi(t),t….uc , so that the shock waves are always t
waves of switching between the blocks withu5u1 at rest in
front of the wave tou5u2 at rest behind the wave. In othe
words, we do not consider the possibility of the onset
creep behind the wave. An analysis of creep motion is
yond the scope of the present paper. The condition of
absence of creep should in fact be satisfied for a wide c
of initial conditions. In particular, it is easy to see that
wave with u1.uc will never be able to reach the poin
whereu,uc if we have

uuxu,
v

c~uc!
, ~20!

provided that the regions withu,uc are initially at rest. The
condition in Eq.~20! simply means that the wave with spee
c will never catch up with the point at whichu5uc whenu
grows according to Eq.~6!.

V. SPATIOTEMPORAL PATTERNS

Let us now apply the procedure developed in the prec
ing section to spatiotemporal patterns forming in the sys
under consideration. As in any excitable system@1–6#, the
basic pattern of this kind is a periodic array of shocks~wave
train! traveling with constant velocity. From the results
the preceding section one can see that a periodic wave
should consist of sharp fronts in which the value ofu jumps
from u1 to u2 followed by refractory regions whereu
slowly recovers back tou1 ; so the resulting pattern is saw
tooth~Fig. 5!. In the refractory regionu obeys Eq.~6!, which
in the frame moving together with the wave with speedc
becomesuz52v/c, wherez5x2ct is the self-similar vari-
able. Therefore, the solution foru in the refractory region
which properly matches with the back of one shock az
50 and the front of another atz52L, whereL is the period
of the wave train, has the formu5L21(z1L)u2

2L21zu1 , where

L5
cA

v
, ~21!

c5c(u1) ~Fig. 3!, andA is given by Eq.~17!. Equation~21!
should in fact be obvious from purely geometric consid
ations. Thus, there exists a family of nonlinear periodic tr
eling wave solutions whose speed and period dep
strongly on amplitude. Similarly, the periodT of this solution

FIG. 5. Periodic wave train.
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in time depends on the amplitude simply asT5A/v; so the
frequency of the shocks at a particular point as the wave t
passes isv;A21. The latter in fact represents a simple for
of the Gutenberg-Richter scaling law with scaling expon
b51 @29#. In other words, this exponent would be observ
in the system under consideration if its dynamics were do
nated by periodic wave trains. It is interesting to note that
value ofb actually observed from earthquakes generally l
in the range 0.8,b,1.2 @30#.

The above arguments are justified as long asu1.uc , so
that no creep develops behind the traveling front. Therefo
according to Eqs.~17! and ~21!, traveling wave trains exis
only whenL.Lmin , where

Lmin5v21c~uc!uc . ~22!

Let us now consider another kind of spatiotemporal p
tern that is typical of excitable systems—the source of co
terpropagating waves@1–6#. The existence of such a solutio
is associated with the fact that if there is an inhomogene
distribution of u at rest such that the maximum ofu is lo-
cated atx5x0 , then at some point in time the value ofu(x0)
may reach 1, so that the blocks will become unstable crea
a pair of counterpropagating shocks~Fig. 6!. After these
shocks moved away fromx0 , the distribution ofu can once
again have a maximum atx5x0 ; so after some time the
value of u will increase until it reaches 1 and the cycle r
peats.

These solutions are indeed realized in our system. C
to x5x0 we can approximate the distribution ofu as

u~x,t !.12a~x2x0!21vt ~23!

@see Eq.~6!#, where we also assumed that the slip occurs
t50. This time-dependent distribution ofu gives values ofu
in front of the shocks att.0, after the slip occurred, thu
determining the velocity of the shocks. The analysis of
free boundary problem in this case~Appendix C! then shows
that right after the slip the positions of the shocks will
given by

xi.x06Abt, b5
v1Av218a

2a
, ~24!

where the plus and the minus correspond to the sho
propagating to the right and to the left, respectively. Not
that Eq.~24! in general shows how to treat the singularity
the free boundary problem~Sec. IV! associated with the cre
ation of a pair of counterpropagating shocks.

FIG. 6. A source of counterpropagating waves.
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The solution forxi(t) in Eq. ~24! then allows us to calcu
late the distributionu8 after the shocks have passed,

u8~x,t !.u2~1!2a8~x2x0!21vt, ~25!

wherea8 is given by~see Appendix C!

a852ak1
2av~11k!

v1Av218a
, ~26!

u2(1)52exp(2pg/A12g2) @see Eq.~16!#, and

k5S 11
pg

~12g2!3/2D expS 2
pg

A12g2D . ~27!

From Eq. ~27! one can see that the value ofk lies in the
range 0,k,1. The plot ofa8 as a function ofa at a par-
ticular value ofg is presented in Fig. 7.

From Eq.~26! one can see that there is a maximum ofu8
at x50 (a8.0) when the shocks have passed, ifa,amax,
where

amax5
v2~11k!

2k2 . ~28!

If this condition is satisfied, after timeT5v21@1
1exp(2pg/A12g2)# the distribution ofu will look exactly
like the one in Eq.~23! which we started with, but with a
different value ofa. Therefore, Eq.~26! defines an iterative
map for the value ofa corresponding to the solutions foru at
timesnT, wheren is the number of iterations. Physically,
source with periodT will form at x50, creating traveling
waves propagating away from it. Note, however, that ev
though the period of the source is a constant that does
depend on the initial conditions, the solution represents
aperiodic process since after each cycle the value oa
changes. The latter is represented in Fig. 7. Observe tha
always havea8,a. From Fig. 7 one can also see that af
many periods the value ofa will tend to zero. The analysis o
Eq. ~26! ~see also Fig. 7! shows that zero is the only fixe
point of the mapa→a8 for any g. For small enough value
of a Eq. ~26! can be approximated asa8.a@122a(1
1k)/v2#. It is then easy to show that aftern@1 iterations
we will havean.v2/@2n(11k)#, wherean is the result ofn

FIG. 7. Dependencea8(a) from Eq. ~26! at g50.3.
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iterations of the map. Note that because of the fact thaa
becomes smaller and smaller with each cycle, the distri
tion of u becomes flatter and flatter@see Eq.~23!#, which
means that after a long time the regions in the neighborh
of the source will tend to synchronize. The characteristic s
R of a region in which the synchronization takes place can
estimated asR;an

21/2; so we will haveR;t1/2. Also note
that for the same reason if there are two sources with une
values ofa,amax some distanceR apart, after timet;R2

the one with the smaller value ofa will overwhelm the one
with the larger value ofa. It is then natural to expect that i
the initial distribution ofu has all maxima witha,amax, the
system will eventually synchronize into uniform oscillation
in which all the blocks slide together.

A different situation is realized whena.amax. In this
case the distribution ofu forming after the shocks move
away from the origin will be aminimumrather than a maxi-
mum of u; so the next creation of a pair of shocks will n
occur atx5x0 , but rather at different points in space. Ther
fore, it is natural to expect that for sufficiently random initi
conditions one would see shocks created and annihilate
random points in space, creating a kind of spatiotempo
chaos.

VI. CONCLUSION

Let us now summarize the results of our analysis a
discuss the relationship of our results with those obtained
other models of stick-slip motion. In the present paper
analytically investigated the Burridge-Knopoff slider-bloc
model with the Coulomb friction law, which is differen
from the one used in most previous studies@9,10,12–16#.
This difference is expressed in the fact that our friction is
discontinuous function when the velocity of the block b
comes zero. As a result, the system is capable of propaga
ultrasonic traveling solitary waves in the limit of zero load
plate velocity for any value of accumulated stress above
excitability thresholdu50. The existence of such solution
is a characteristic feature of excitable systems@1–6#.

In the continuum limit the solution in the form of th
traveling shock wave is independent of the short-scale
havior of the system, except for the precise form of the
pendence of the wave’s velocity on the amount of the ac
mulated stress in front of the wave. The latter in fact on
weakly depends on the dynamics of the model at short len
scales if the value ofu is sufficiently close to the slipping
thresholdu51. Note that one might want to calculate th
dependence of the wave velocity on the amount of the ac
mulated stressu1 by formally combining Eq.~12! at z50
with the continuum version of Eq.~9! at z50. This would
give an incorrect resultc51/A12u1. This means that al-
though the continuum approximation may be valid for fin
ing the wave profile behind the slip point, one still needs
solve the discrete problem at the tip of the wave in order
find its velocity.

In the limit of vanishing loader plate velocity the onl
parameter in the model is the dimensionless coefficien
viscous frictiong. All our analysis was performed for arbi
trary values ofg; so it is also applicable to the caseg50,
i.e., when the viscous friction is absent. This case, howe
has one special feature, which is that forg50 we haveuc
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50 @see Eq.~14!#; so asu approaches zero the speed of t
wave approaches 1 and the widthw goes to zero@see Eq.
~15!#. Therefore, for a fixed value ofDx!1 the continuum
limit will no longer be justified for the description of th
waves whenu becomes sufficiently close to zero. Also, wh
g50 the amplitudeA52u1 of these waves@see Eq.~17!#
will be able to become arbitrarily small.

According to the results of our analysis, the solution
the form of the traveling shock wave, as well as a perio
wave train of a given period, is unique in the limit of va
ishingly small loader plate velocity, and its speed is uniqu
determined by the value ofu in the front of the wave. This is
in contrast with the results of Langer and Tang@15# and
Myers and Langer@16# for models with velocity-weakening
friction where they find a continuous family of such sol
tions and therefore a selection problem.

Note that systems with velocity-weakening friction tran
form to the model considered by us in the limit of smallVf ,
where Vf is the characteristic velocity of variation of th
friction force. Indeed, if the characteristic speed of a blo
during the slip exceedsVf , the friction force will drop very
rapidly, acting in the same way as in our model. To obt
the criterion of smallness ofVf , we note that the effect o
the velocity dependence of the friction is most pronounced
the slip region, where, according to Eq.~10!, ut;Dx
5Akp /kc, where we assumedc;1 ~u is not near the thresh
old value u51). In the original variablesdXi /dt;( f r

2 f s)/Akcm; so the conditionVf!dXi /dt gives

Vf!
f r2 f s

Akcm
. ~29!

This formula should in fact be obvious from physical co
siderations. Similarly, one should recover our results for
creep-slip models considered in@7# if the characteristic ve-
locity of variation of the friction force is small enough.

In contrast, if the condition opposite to the one in Eq.~29!
holds, no traveling shock waves can be realized in the c
tinuum limit. This can be seen from the following argume
In a traveling wave the profile ofu should be described b
Eq. ~12! in which, in the case of the velocity-weakenin
friction, one should drop the term22cguz and replaceu by
u21 close to the slip point. There we must haveuzz,0; so,
according to the modified Eq.~12!, we will havec,1 in the
traveling wave. On the other hand, the propagation of s
sonic waves in the system is impossible since from the
persion relationv2511k2 for the waves in the absence o
friction we get that their phase velocityc5v/k5A11k22

.1 for all k. On the other hand, numerical simulations sh
that in discrete models with velocity-weakening friction tra
eling shock waves are indeed observed. However, forDx
!1 these waves move with speeds very close to the spee
sound and their width is just a few lattice spacings~unless
one is close to the thresholdu51; see also@15,16#!. One
should therefore expect that in the continuum limit only d
continuous shocks traveling with the speed of sound are
sible, in contrast to the situation studied in the present pa
This is a crucial distinction of the Burridge-Knopoff mod
with velocity-weakening friction and the one with the Co
lomb friction law ~Fig. 2! studied by us.
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As was already discussed above, the propagation spee
the wave depends on the short-scale dynamics of individ
blocks. Therefore, in order to be able to perform numeri
simulations of the models under consideration in the c
tinuum limit, one has to use a very small discretization
time. This should make direct simulations of our mod
rather difficult. On the other hand, we showed that if t
initial conditions vary sufficiently slowly, the dynamics o
the system reduces to the motion of individual shock wa
~see Sec. IV!. Therefore, by reformulating the dynamics
the problem in terms of the free boundary problem one
dramatically increase the speed of the simulations, thus b
able to observe the dynamics for much longer times. T
should be important in the statistical analysis of our syste
especially in the context of earthquakes~see also@12–14#!.

Let us see how the results obtained from the studies of
model should translate to real stick-slip problems. Consid
for example, a Bristol board of thicknessh52 mm lying on
a surface made of the same material under external pres
p and pulled at the top@21#. The coefficientsm r and ms of
the static and the sliding friction for these surfaces w
found to bem r50.37 andms50.31, respectively@21#. The
memory length which we should use for the distancea be-
tween the blocks was found to bea51 mm. A single block
in the Burridge-Knopoff model should be associated with
piece of the board of dimensionsa3a3h; so the massm of
the block should bem52.4310212 kg, where we used the
density r51.2 g/cm3. From the speed of soundc
5aAkc /m @Eq. ~3!# we can calculate the values ofkc and
kp5kc(pa/2h)2 ~see the end of Sec. II!. Using c
54000 m/s, we find kc53.83107 N/m and kp52.3
3101 N/m. The friction force jump per single block isf r
2 f s5pa2(m r2ms). One can see that the condition of E
~29! with Vf51025 m/s ~see @21#! is satisfied if p52
3106 Pa520 atm, which givesf r2 f s51.231027 N. For
this value ofp the characteristic sliding velocity will beẊ
;( f r2 f s)/Akpm51.6 cm/s. The displacementDX in a
single wave can also be estimated asDX52( f r2 f s)/kp51
31028 m. The latter quantity turns out to be quite sma
Note that bothDX and Ẋ increase asp increases. Also,
smaller pressuresp would be needed for smaller values ofh.
From @21# one can calculatea56.731026 kg/s for this
value ofp, leading tog50.45.

In the present paper we studied a perfectly homogene
system without any external noise. It is clear that in re
systems some degree of noise should be present. It is in
esting to know what effect the introduction of randomne
will have on the behavior of the traveling waves. Here o
can distinguish two different situations. If one adds so
small randomness in the parameters of individual bloc
such as the friction coefficients, spring constants, and
forth, one would expect the renormalization of the speed
the traveling waves. The other kind of noise would result
sudden transitions of the blocks at rest to sliding. This k
of noise can be readily incorporated into our free bound
problem by introducing the generation of pairs of count
propagating waves at random points in space. Here the o
question is how the frequency of this generation should
pend on the distance to the slipping threshold. It is also
teresting how the presence of such a noise would affect
wave statistics.
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APPENDIX A

Since the variation ofui leading to the slip event is o
orderDx2 and is small for smallDx, for the blocks near the
slip point one can neglect both the variation ofui and the
term22gdui /dt in Eq. ~7!; so in the limitDx→0 the right-
hand side of this equation simply becomesu1215const.
For convenience, let us introduce the new variablest andv i ,
such that

t5ts1tDx, ui5u12u1~Dx!2S v i1
t2

2 D . ~A1!

Since att50 thesth block just slipped, we must have@see
Eq. ~10!#

vs21~0!5
12u1

u1
, ~A2!

with the initial conditions

vs~0!50, vs8~0!50, ~A3!

where the prime denotes the derivative with respect tot.
In the limit Dx→0 Eq. ~7! can be written as

d2v i

dt2 5v i 111v i 2122v i , i ,s, ~A4!

d2v i

dt2 5v i 2122v i2
t2

2
, i 5s. ~A5!

These equations essentially describe a linear array of
masses connected by springs with spring constant 1, with
sth mass attached to a rigid wall and acted upon by a tim
dependent force2t2/2.

If the wave moves with speedc, after timet51/c, which
corresponds toDt5Dx/c @see Eq.~A1!#, it should move the
distanceDx to the right. This means that at timets115ts

1Dt we must haveui 21(ts)5ui(ts1Dt), ui 218 (ts)5ui8(ts

1Dt), or in terms of the new variables

v i 21~0!5v i~c21!1
1

2c2 , ~A6!

v i 218 ~0!5v i8~c21!1
1

c
. ~A7!

Note that these conditions introduce a feedback into E
~A4! and ~A5!. Also, the solution of Eqs.~A4! should be
matched with the continuum profile behind the tip, whi
satisfies Eq.~12!. We should therefore have

vs2k>
k2

2~c221!
, k@1. ~A8!

Equations~A3!–~A7! can be solved numerically by a
iterative procedure. Then, calculating the value ofvs(c

21),
using Eq.~A6! as a function ofc, one can relate it tou1

through Eq.~A2!. The results of this numerical solution fo
c.1 are presented in Fig. 3. These results also show
close tou150 we have
it
he
-

s.

at

c.11
1

2
u1

2 . ~A9!

The problem in Eqs.~A3!–~A7! can be treated analyti
cally by expanding its solution in the powers ofc21. Indeed,
if c is large, fort,c21!1 the right-hand sides in Eqs.~A4!
and~A5! can be neglected; so the solution of Eqs.~A3!–~A7!
for k>0 in the leading order inc21 will be

vs2k
~0! 5

k2

2c2 1
kt

c
. ~A10!

Physically, this corresponds to the situation in which t
springs between the blocks are absent.

To calculate the first-order correctionvs
(1) , we usevs21

(0)

in Eq. ~A5! to obtain

vs
~1!5

t2

4c21
t3

6c
2

t4

24
. ~A11!

This solution is then used to fix through Eqs.~A6! and~A7!
the initial condition in Eq.~A4! with i 5s21 to the next
order in c21. Using the solutionsvs

(0) , vs21
(0) , andvs22

(0) in
Eq. ~A4!, one can then calculatevs21

(1) :

vs21
~1! 5

3

8c4 1
5t

6c3 1
t2

2c2 . ~A12!

The knowledge ofvs21
(1) andvs

(1) then allows us to calculate
the next-order correctionvs

(2) by substituting them into Eq
~A5!:

vs
~2!5

3t2

16c4 1
5t3

36c3 2
t5

60c
1

t6

360
. ~A13!

Substituting the obtained solution forvs into Eq. ~A2! and
using Eq.~A6! with i 5s21, we get approximately

1

2c2 1
3

8c4 1
5

16c65
12u1

u1
. ~A14!

Note that this procedure can be continued to an arbitr
order in c21, although the calculation then becomes rath
cumbersome. Let us only quote the result that the correc
to the left-hand side of Eq.~A14! due to the next order term
will be 0.2719/c8.

Finally, combining Eq.~A14! with Eq. ~A9!, we arrive at
the interpolation formula given by Eq.~11!.

APPENDIX B

Here we solve Eq.~12! with the initial conditions given
by Eq.~13! for arbitraryg. Let us introduce the new variabl
j5z/Ac221 and a constantg̃5cg/Ac221, wherec is a
function of u1 ~Fig. 3!. Then, Eq.~12! can be rewritten as

ujj22g̃uj1u50, ~B1!

with the same initial conditions written in terms ofj:

u~0!5u1 , uj~0!50. ~B2!
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Two situations are possible here. If we haveg̃.1, both
roots of the characteristic equation of Eq.~B1! are real; so
the solution has the form

u5aej~g̃1Ag̃221!1bej~g̃2Ag̃221!. ~B3!

Using the initial conditions from Eq.~B2!, we obtain for the
coefficientsa andb

a5
u1

2 S 12
g̃

Ag̃221
D , b5

u1

2 S 11
g̃

Ag̃221
D .

~B4!

From the solution we see that behind the wave the distr
tion of u asymptotically approaches zero. This means that
haveu250, but the system comes to rest only atz52`; so
the widthw of the wave is infinite. The form of the solutio
is shown in Fig. 4~a!.

In contrast, wheng̃,1, the roots of the characteristi
equation of Eq.~B1! become complex conjugate; so the s
lution has the form

u5aeg̃jcos~jA12g̃2!1beg̃jsin~jA12g̃2!. ~B5!

Substituting the initial conditions from Eq.~B2!, we obtain

a5u1 , b52
u1g̃

A12g̃2
. ~B6!

In constructing the full solution one should also take in
account that the block will stick back when it comes to re
which will happen whenuj50 for vanishingv. According
to Eqs.~B5! and~B6!, this will occur atz5zs52w, where

w5
p

A12g̃2
. ~B7!

Behind the stick point the value ofu will remain constant
equal tou2 , with

u252u1expS 2
pg̃

A12g̃2D . ~B8!

Going back tog, we can rewrite the equations above as E
~15! and ~16!, respectively. The form of the solution in th
case is shown in Fig. 4~b!.

The solutions obtained above are the exact traveling w
solutions of Eqs.~6!–~9! in the casev50. As can be seen
from the construction, the traveling wave solution is uniq
for any given value ofu1 .
.

-
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APPENDIX C

When a pair of counterpropagating shocks is created, t
speed will be large, since in the neighborhood ofx0 the value
of u will be close to 1. This allows us to use Eq.~A14! and
write

ci.
1

A2@12u~xi ,t !#
~C1!

for xi close tox0 . Note that Eq.~C1! expresses the fact tha
for u close to 1 the coupling of the blocks through the lo
gitudinal springs becomes inessential~see Appendix A!.

Without any loss of generality, we can putx050. Accord-
ing to Eqs.~19! and ~C1!, we have approximately

ẋi56
1

A2~axi
22vt !

~C2!

for not too largeuxi u and t, with the initial conditionxi(0)
50. The solutionxi(t) that satisfies this equation and th
initial condition has the formxi56Abt, where the constan
b has to be determined. Substituting this expression forxi(t)
into Eq.~C2!, we obtain the following quadratic equation fo
b:

ab22vb2250. ~C3!

According to the definition ofb, only the positive solution of
this equation has physical meaning. Taking this into acco
we obtain that the value ofb is given by Eq.~24!.

From the solution of Eq.~C2! one can see that the shoc
reaches pointx at the momentt i(x)5x2/b. Right after the
shocks have passed the new value ofu at the momentt i(x) is
given by Eq.~16!. Therefore, according to Eq.~6! the distri-
bution u8 at a pointx and timet.t i(x) behind the shock is
given by

u8~x,t !5u2@u„x,t i~x!…#1vt2vt i~x!, ~C4!

whereu is evaluated right before the shock reachedx. Since
u in Eq. ~C4! is close to 1, we can Taylor expand the depe
denceu2(u1) in this equation and keep only the first tw
terms. As a result, we obtain

u8~x,t !.u2~1!1kS ax22
vx2

b D2
vx2

b
1vt, ~C5!

where k52du2 /du1 evaluated atu151. Using the ex-
plicit expression foru2 together with Eq.~C1! in Eq. ~16!,
one arrives at Eq.~27!. Then, using the value ofb from Eq.
~24!, Eq. ~C5! can be transformed into Eq.~25!.
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